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1. INTRODUCTION.

1.1 The regression model in goodness-of-fit,

Suppose a random sample X_,X

1 Xn comes from distribution

grtee

Fo(x) and let X be the order statistics. Fo(x) may

W X2y F )
be of the form F(w) with w = (x-a)/B; o 1is then the location parameter
and f is the scale parameter of Fo(x). There may be other parameters
in F(w), for example, a shape parameter; here we assume such parameters
known, but o and B are unknown. We -an suppose the random sample of

X-values to have been constructed from a random sample Wi W e W from

F(w), by the transformation

X, = a+ Bw, . (1)
i i
isti - < < ... <
If the order statistics of the w-sample are w(l) w(z) w(n) .
we have also
., = O . 2
X(g) = @+ Bugy, (2

Iet E(w,.,}) be m, and let v, be E(w

(i) i i3 (1) T ™ Wiy TRy

let V be the n X n matrix with entries v,j . V 1is the covariance
1

matrix of the order statistics w(i). From (2) we have

E(X,.,) = a + Bm, (3)

(1) i
and a plot of x(i) against m, should be approximately a straight line
with intercept a on the vertical axis and slope B . The values m, are

the wost natural values to plot along the horizontal axis to achieve a

straight line plot, but for most distributions they are difficult to calculate.




Various authors have therefore proposed alternatives Ti which are con-

venient functions of i ; then (2) can be replaced by the model

X,., = 0 + BT, + €, (4)
(1) i i

where €i is an "error'which has mean zero only for Ti = m,.

- =1, ..
A common choice for T. is Hi =7 {i/(n+1)} or similir

Y

expressions which approximate m.o. A test of

Hy: the X-sample comes from Fo(x), (5)

can then be based on how well the data fits the line (3) or (4).

1.2 Example,. As an example, suppose it is desired to test that the

X-sample is normally distributed, with unknown mean U and variance O

w

2
1 -
Then Fl(w) = Tom f et /2 dt , and the w-sample is standard normal.

- 0o

Then (1) becomes

and (3) is
E(X )=u+0mi

(1)

where m, are the expected values of standard normal order statistics.

For this distribution, o =y and B =0 .




1.3 Measures of fit,.

The practice of plotting the X(i) against m, (or against
another set of constants Ti which approximate the mi-values)
and looking to see if a straight line results, is time-honored as a
quick technique for testing normality. An improvement on this procedure
by eye, is to measure how well the data fits the line (3). Three main
approaches to measuring the fit can be identified. The first is simply
to measure the correlation coefficient R(X,T) between the paired sets
Xi and 'I‘i . A second method is to estimate the line O + BTi , using
generalized least squares to take into account the covariance of the order
statistics, and then to base the test of fit on the sum of squares of
residuals. Finally, a third technique is to estimate f from (2) using
generalized least squares, and to compare this estimate with the estimate

of scale given by the sample standard deviation. In this article we

explore the first two of these methods, which are often closely connected.

1.4 The correlation coefficient.

The simplest of the three methods above is to use the correlation
co-efficient R(X,T). Here we extend the usual meaning of correlation,
and also that of variance and covariance, to apply to constants as well as

random variables. Thus let X refer to the vector X(l)""'x(n)’ and T

Ex(i) ZTi (all sums are for
to vector Tl,...,Tn; let X = — and T = —;—-’

i = 1 to n) and define the sums




S(X,T) = E(X,., - X)(T, = T) = IX,,,T. - nXT ;
(1) i (1) i
S(X,X) = L(X,., - 02 = (x, - %2
(i) i
-2
s(T,T) = Z('ri - T)
2

S(X,X) will often be called S

. . 1 .
The variance of X is then V{(X,X) = 1 S(X¥,¥), the variance ol
T is v(T,T) = E%T s(T,T), and the covariance of X and T is
v(X,T) = HEI S(X,T). The correlation coefficient between X and T is
R(X,T) = v(X,T) _ S(X,T). )

{V(X,X)V(T,T)}% {S(X,X)S(T,T)}H

. . , 2 . .
Statistics R(X,m) (called sometimes R) or R (X,m) are attractive statistics

testing the fit of X to the model (2), since if a "perfect" sample is
given, that is, a sample whose ordered values fall exactly at their
expected values, R(X,m) will be 1 , and the value of R(X,m) can be
interpreted as a measure of how closely the sample resembles a perfect
sample. Then tests based on R(X,m), or equivalently on R2(X,m) will
be one-tailed; rejection of Ho occurs only for low values of R .
Suppose §(i) = & + éTi, where & and é are the usual regression
estimators of a and B (ignoring the covariance between the X(i))'

It is possible to set up the standard ANOVA table for straight line

regression:

for




Re ion SS = EELKLEL
gression = 5.7
2 52T - 2
= - —_—t = (X, .. - X,.
Error $$ =5 -Zgmm - % T ¥y
2
Total S8 = 8" = s(X,X)

and it is clear that

Error SS

2
Total ss -~ 1 ~ R (X,T).

Define, for any T vector,

2(x,T) = n{l - R2(x,T)}.

Then Z(X,T) 1is a test statistic equivalent to R2(X,T), based on the sum
of squares of the residuals after the line (3) has been fitted. 2Z(X,T)

has, in common with many other goodness-of-fit statistics e.g., chi-square,
and EDF statistics, the property that the larger Z(X,T) is, the worse the
fit. Sarkadi [1975] and more recently Gerlach [1979]have shown consistency
for correlation tests based on R(X,m), or equivalently 2Z(X,m), for a wide
class of distributions including all the usual continuous distributions.
This is to be expected, since for large n we expect a sample to become
perfect in the sense above. We can expect the consistency property to
extend to R(X,T) provided T approaches m sufficiently rapidly for

large samples.

2
1.5 Censored data. R (X,T) can easil be calculated for censored

data, provided the ranks of the available X(i) are known. These




6,

2 .
are paired with the appropriate Ti and R (X,T) 1is calculated using the

same formula as above, with the sums running over the known i .

For example if the data were right censored, so that only the r
smallest values X(i) were available, the sums would run for i fram
1 to r; if the data were left-censored, with the first s values missing,
the i would run from s+l to n . Tables of 2(X,T) for T =m or

H , for testing for the uniform, normal, exponential, logistic, or

extreme-value distributions have been published by Stephens (1986).

2. CORRELATION TESTS FOR THE UNIFORM DISTRIBUTION,

For the uniform distribution for X , between limits (a,b),
written Ula,b), we have F(w) =w, 0 <w <1, and Xi =a+ (b~ a)wi ;

hence a=a , B =b ~ a. Then m, = E(W = i/(m+l); also Hy =m. .

1

(1)
The order statistics X(i) could be plotted against i instead of

against i/(n+l); the scale factor 1/(n+l) does not change the correlation

coefficient, and R(X,m) = R(X,H) = R(X,T) where Ti ="i .,

In discussing tests for the uniform distribution, we distinguish
four cases:
Case 0; a,b both known;
Case 1; a unknown, but (b-a) known;

Case 2; a known, (b-a) unknown;

Case 3; both a and b unknown.

Case O. Here a and b are both known, so that a and B are known

in (1). The transformation X' = (X-a)/(b-a) then reduces the problem to




a test that X' 1is U(0,1). There are of course many tests for this
special case (see, eg., Stephens, 1986). 1In the present context, the test
will be based on the residuals from the known line F(x') = x', 0 < x' < 1;

2 .
that is, on the statistic 2. = Z{X}i) - i/(n+1)}°. It is clear that 2

0 0]

has the same asymptotic distribution as the well-known Cramér-von Mises

2
statistic W' = L{x* - (2i - 1)/(2n) ¥ + 1/(12n), and, for small samples,

)

the two statistics will have much the same power properties.

Case 1. Heire the model is X(i) = a + Bw(i)' with B = b-a known.
Substitut ’ = X ; oy = + W '
ubstitute X\ (i)/B ; then the model becomes X (i) a/B (i)

and E(Xzi)) = a + (mi - m), where o =a/f +m . Ordinary least

squares gives Q = X' . Hence X;i) =X + me = 0.5 and the test statistic
- 2
based on residuals is Zl = Z{X}i) - X' - (mi - 0.5)}". Zl has similar

. 2 s
properties to the Watson U statistic

U2 = T[x

5y - % - li-n/en) - 0.5}]% + 1/(12n), and has the same

asymptotic distribution.

Case 2. For Cases 2 and 3 the situation becomes uiucn hacder, and considerable
analysis is required to obtain the asymptotic distributions of the test

~ 2 - .
statistic nZ(x(i) - x( ) /Z(x(i) - x)2, the denominators being necessary,

i)
and complicating the analysis, because for these two cases the scale must be

estimated. We state the results and give proofs later. For Case 2, the

model is E(X,.,) = a + Bm,, with B unknown and a known. Set X'..oo=x,,. - a,
(i) i (i) (1)

so that E(X,.,) = Bmi, and estimate B by least squares; then

(1)
B = Ix'. m./Zm? . Thus X ., = a + Bm,, and the test statistic is
(1)1 i (1) i




- 2 =12 . . . .
22 = nZ{x(i) - x(i)} /X{X(i) - X}, 22 has the same asymptotic distribution
- . 2
as Z: = LVi/Ai where Vi for i =1,2,..., are independent xl
. . Ces - . . 2
variables; Xi is an infinite set of positive weights given by Xi = ei '

where Bi are the solutions of tan Oi = Si, Bi > 0 (see Section 3 below).

Case 3, For Case 3, the model is E(X(i)) = + B(m.l - 0.5), with a,B unknown, and leas
~ - ~ - - - 2
squares gives Qo = X and B = Z[{X(i) - X}miJ/L(mi - m}) . The test

statistic is now the correlation coefficient R(X,m) or equivalently Z, = Z(X,m);

~ ~ ~

2 ~ 2 -2
23 =n{l - RT(X,m)} = nZ{X(i) - X(i)} /Z{X(i) - X}°, where x(i) = Qa + B(m,l - 0.5).

*
Z3 has the same asymptotic distribution as 23 = Evi/xi' where,

. 2 o
as above, v, are independent Xl variables. The constants Ai are positive

weights given in two infinite sets:

set 1: A, = 4n2i2, i=1,2,....

Set 2: A = 4¢2, k =1,2,..., where ¢ are the solutions of tan ¢ = ¢ ,
k k k k k
¢ >0

The derivationof the weights for Cases 2 and 3 will be given in the

next section.

3. ASYMPTOTIC PROPERTIES OF 2(X,m).

3.1. Case 3. It is convenient to give the asymptotic results for Case 3
(the more ditficult case) first. Suppose, without loss of generality,

that the sample comes from U(0,l). However, the model is fitted without




this knowledge: thus the fitted model is

) = . - m . 6
X(i) o+ B(ml m) + Ei (6)
As stated in Section 2, this leads to the test statistic
2 - 2 =, 2
20 = - R = - ) X, - .
(x,m) = n{l - RT(X,m)} LX iy - %) Afx, - %) /n}

Asymptotically, the denominator tends to 1/12; thus we must study

-~

Y. - X . Thi i
(i) (i) is may be written

~ ~

Y. - - B(mi - m

(1)

i
s
!
3
!
™
1
s
8

[ et
]
39
|
3
!
3

= X -m - (X-m - B - L(m -m. (7)
1 1

The terms on the right hand side of (7) can be expressed in

terms of the quantile process Qn(t) = X[nt] -m 0=t =1, where

[nt]”

{nt] 1is the greatest integer in nt. For t given by 1i/n , we have

gy 7™y T 98
1
yn(Xx - m) = f Q (s)ds + 0O (n” %)
n p
0
/nB - 1) = n—HZ(x(i) -X-m +mm -m
Z(m., - m /n
1 1
-
= 12 ( (t - 5){Qn(t) - f Qn(s)ds}dt + Op(n ),
0 0
recalling that m = % and E(mi - a)z/n - 1712 . It is convenient
1
to define the process Yn(t) = Qn(t) - f Qn(s)ds. Then insertion
0

of the above expressions into (7) gives




10.
1

1
X .. = X,..=Y (£) - [(u=1% [12( =) .y (£).dt du + O (n
(1) (1) n n P

0 0

1y, (8)

As n >, let Q(t), Y(t) be the limiting processes for Q (t) and v (t)
respectively. Of(t) is the well-known Brownian bridge with mean

E{Q(t)} = 0 and covariance po(s,t) = min(s,t) - st. Y(t) then has mean O
and covariance py(s,t) = min(s,t) - %s(l1 - s) - %t{(1l-t) + 1/12, The

process Y(t) has already been studied in connection with the Watson
statistic U2 (Watson, 1961; Stephens, 1376). For the asymptotic

distribution of 2(X,m) we now need the distribution of

1
2% = J W (t) dat, (9)
0

where, from (8), we have

1 1
w(t) = Y(t) - f(u - k) f 12(t - &%) Y(t) dt du . (10)
0 0

The covariance function of W(t) requires considerable algebra but

the calculation is straightforward; the result may be expressed as

pw(s,t) = Oo(s,t) - P(s) 'Ap(t) (11)

where Y(s)' is the transpose of Y(s), and is the 2-component vector
{(s = 4); s(1-s)(2s - 1)}; A is the 2 x 2 matrix with rows (- %, 1)
and (1,0). The calculation of the distribution of 2* now follows
well-known lines (see, for example, Durbin , 1973, or Stephens, 1976) ;

2* has the same distribution as 5 = Ei vi/xi . where i runs from




11,

2 . ;
l to >, v, are indepenuent Xl variables, and whexe Ai are weights,

found by solving the inteqral equation

1
A f f£(s) pw(s,t) ds = f£(t) (12)
0

1

for eigenvalues Ai and eigenfunctions f (t}.

The solution of (12) is found as follows. The covariance pw(s,t)

can be expressed as pw(s,t) = min(s,t) + g(s,t), with

6 11 2 3 11 2 3 2 2 3 2 3
= — - — - - —_—— - t —_— - + 2 - .
g(s,t) Sst o0 S + 2s s lot-+ 2t + 15 3st st 3s"t + 257t

Differentiation of (12) twice with respect to t then gives

1l 1 1 1
-f£(t) + 4ff(s)ds - thf(s)ds - 6fsf(s)ds + 12t|sf(s)ds = %—f‘Lt)- (13)
0 0 0 0

Differentiation again gives

1
-f' (t) - Grf(s)ds + lzfsf(s)ds = % £ (t) (14)
0 0

and finally

- £ () =5 £1()

>

Thus f(t) = A cos YAt + B sin YAt + Ct + D . {15)

1 1
Suppose f(s) is normalized, so that ( f(s)ds = 1, and let K = f sf(s)ds.
J
0 0

1
set 0 = ¥YA; then r f(s)ds = 1 gives
0

g-sine—-gi(cose-l)+§—+®=l (16)




12,

and
1 ‘
K = Sf('S)dS = AI + BT + E + 2 (17)
1 2 32!
¢]
where
1
I, = f s cos Os ds = B sin 6 + cos 0 ~ 1
1 82
0
1
I, = { s sin fs ds = 22D 6 *29 cos O .
0 6

Substituting f(t) into (13) gives -Ct - D + 4 - 6t - 6K + 12Kt = 0

for all t ; thus, equating coefficients, we have

-C~-6+ 12k =0 and -~-D+4 ~6K=20 .

NS

Hence %-+ =K, and C + 2D = 2,

Thus from (16) we have A sin 0 - B(cos 8 - 1) = 0, and from (17) we have

AIl + BI, = 0 . Hence 0 must satisfy
. I .
sin 8 _B__"1_1-0sin 6 - cos B (18)
cos 6§ - 17 p I, sin 0 - 6 cos 6 7
So 8 satisfies 2 - 8 sin 6 - 2 cos 8 = 0 » by cross-multiplication

2
; then 2 - 44 sin ¢ cos ¢ - 2[1 - 2 sin“d] = 0 , and hence

NICD

of (18). let ¢ =

sin ¢ = 0 or sin ¢ -~ ¢ cos ¢ =0 . Then ¢i =wi, 1 =1,2,...; or alternatively

R 2
¢, is the solution of tan ¢k = ¢k » k=1,2,...,. Finally, Ai = 4¢i, for the

2
first A-set, and Ak = 4¢k' for the second A-set.




13,

3.2 Case 2. For Case 2 the test statistic is
L(X ; )2/Z(X ?)2 = 2 W take = 0 in the model
nEtR ) (1) (i) = %y - e can a =
E(X,.,) = a + Bm. , so that this becomes E(X,.,) = Bm, , with
(1) i (i) i
s IXymy - LX(5y - mmy
B = —5 — .- Hence B-1-= 3 . Similar reasoning to that
Emi Zmi

for Case 3 gives the asymptotic distribution of Z2 to be that of
1
2
12 Wz(t)dt where

0

1
wz(t) = Q(t) - 3t f sQ(s)ds. (19)
0

Q(t) 1is as defined in the previous section, and then w2(t) is a Gaussian

process with mean O0; its covariance function (after some algebra) is
3 3
. 14 st st
pz(s,t) = min(s,t) - 5 st + —— + -5 - (20)

Thus for the weights in the asymptotic distribution of 22 , we need
1

eigenvalues of A ( oz(s,t)f(s)ds = f(t) Similar steps to those for

0
Case 3 give f£(t) = A cos 6t + B sin Ot + Ct + D with 6 = YA , as before.

Also, f(0) =0, so D = -A, and

1
e
Sf(E) = 3tf sf(s)ds = f—xiil ) (21)
0
Thus f''(0) =0, so D =A =0, Then, from (21), we have

1 1
- B sin 6t - Ct + 3t[8{ s sin Os ds + f C52 ds] = - B sin 0Ot
0] 0




14.

1

Hence f s sin f0s ds = Q; thus Gj is the solution of

0
sin 8. - 6. cos 8. = 0, that is, tan 6, = 0., j = 1,2,... . Finally,
J J J J J
A, = 9% . These are the weights given in Section 2.
J
3.3 Asymptotic percentage points. The next step is to calculate the

percentage points of, say, Zg = Zvi/)\i where Ai are the weights for

1

Case 3. The mean My of 23 is f 03(s,s)ds =+1/15. The 80 largest Ai
0
were found, and Z; was approximated by Sl = S* + T , where
* 80 80 "l . * 0o "l
s = Zl vi/)\i and T = Hy - Zl Ai - 5 differs from 25 by 281 )\i(vi - 1)

which is a random variable with mean 0 and variance

11
© -2 2 80 y-2
= - A°h;
2Lg; X7 2{H pyls,thds dt - L= A
00

this value is found to be negligibly small. Thus critical points of Z; are
found by finding those of S* , using Imhof's (1961) method for a finite sum

2
of weighted X variables, and then adding T .

3.4 Tables. Tables 1 and 2 give percentage points for 22 and Z3

respectively. Those for n finite have been obtained by Monte Carlo
sampling. The last line in each table contains the asymptotic points.

Table 1 also gives points for a modification of 2Z_ , called 2

2 27 °

This is the statistic (using the terminology for Case 2 in Section 2)

~ 2 2 . . 2 ..
Z2A = nZ{X(i) - X(i)} /Zx(i) . This uses the quantity Zx(i)/n to eliminate

the square of the scale instead of the sample variance, This is a natural

denominator in Case 2 with a = 0, where the model is E(X(i)) = Bmi. (If a is




15,

not zero, the new‘variable X'. =X . =-a ¢« uld be used instead of X, .. ).
(1) (1) (1)

The asymptotic points for Z2A are 0.25 times those for 22 . An advantage in

using Z2A is that the statistic is much less variable for small n. For 23, Table 2
has already been produced in Stephens (1986), although with less accurate

points; there will be negligible difference in practical use.

3.5 Use of the Tables with censored data. Suppose origin and scale are

both unknown (Case 3), and the data is censored at both ends. Thus
n* = r -k + 1 observations are available, consisting of all those between

X and X

k) (r)" R(X,T) may be calculated, using the usual formula, but

with sums for i from kX to r , and with Ti = i/(n+l) or Ti =i , or
*
even Tl,T2,... equal to 1,2,...,n , these latter values for Ti being possibilities

2
because R(X,m) is scale and location invariant. Then n* {1 - R (X,T)}= Z2(X,T)

will be referred to Table 3, using the values for sample size n* ,

3.6 Example. It is well-known that if times Qi; i=1,2,...,n represent

times of random events, occurring in order with the same rate, the Q(i)

should be proportional to uniform order statistics U(i) . Thus the Q(i)

may be regressed against 1i/(n+l) or equivalently against i as
described above, to test that the events are random., Suppose

Q(9)'Q(10)""'Q(20) represent a subset of such times, denoting times of

breakdown of an industrial process. We wish to test that these are uniform;

times Q(l) to Q(a) have been omitted because the process took time to
stabilize and these are not expected to have occurred at the same rate

as the later times. The times are 82, 93, 120, 135, 137,

Q9)+-+1220)

142, 162, 163, 210, 228, 233, 261, The value of : 2(Q,T) = 12Q1 - R (0,1}




16,

= 0.464 . Reference to Table 2 at line n = 12 show that there

is not significant evidence, at the 10% level, to reject the hypothesis

of uniformity.




17,

4, THE CORRELATION COQEFFICIENT: GENERAL CASE,

.

4.1 The general case. We now discuss, in a non-rigorous fashion, the

distribution of 2(X,m) for the general test of HO given in (5). Fo(x)
is assumed to be a continuous distribution, and the sample can be left-
and right-censored, Thus we observe X(k) < s < X(r) from a sample

of size n from the distribution Fo(x). We can assume the sample comes
from Fo(x) with a =0 and B =1, that is, from F(*) although (3) is
fitted without this knowledge. Suppose f(x) is the density corresponding
to F(x). Then using H; = F'I(H%IJ we have

IS, -n - & - (B -1)
1

zZ(X,m) = n{1l - R2(X,m)} =

S =]r

r -2
Zk(Hi - H)

Define p = (k-1)/n and q = r/n and let q* = Fgl(q) and p* = F (p).

Also, let
aqa - q
-1 -1
Y(t) = o(t) - ( o(s)ds - ' (:;) = u) f (£ (3) = Hio(s)ds,
p p
where
o(t) = V/n {x([nt]) - F—l(t)}, and parameters U ard O are given by

*

*

q q

U= f F-l(s)ds = ( xf(x)dx ,
J
p P

and




2

o (F1(s)) as

E

18,

*

f 2 .
J x f(s)dx -;UZ .
*

p

2
-.-11

The process Q{(t) is close to a Gaussian process with mean 0 and
covariance
oo (s.t) = —minlstl
£(F (s))E(F “(t))
The process Y(t) 1is then close to a Gaussian process with mean O

and covariance

q
p(s,t) =

P
q q
- f Do(u,t)du - f
p P

q q
e Vi f f Po

P P

-1

where Y(s) = E——igl—:;li

The denominator of 2

2
then close to O , and the numerator is close to

asymptotic theory now depends on the behaviour of T .

q

oo(s,t) - w(s)fw(u)po(u,t)du - W(t)fw(u)po(s,u)du

p

po(u,v)dudv

O e—

q
po(s,u)du + f
p

(u, V) P()YP(v)dudv + (P(s) + P(t)) po(u,v)W(u)dudv

we— A

|

2 2 .
n{1l - R2}, where we write 2 for z(X,m) and R° for R"(X,m), i.

q
f Yz(t)dt. Thus the

T

p
It appears generally




0

p

in practice, which we label Cases A, B and C. Define

qa g
2
Jl = f f po(s,t)dsdt
P P
and
a
J =fp(tt)dt
27| ' :
P
Case A. In this case suppose Jl < o and I, < « _ Then we have

2 1 00
Z=n(l -R") = ;,_— zl vi/ki

2
where vi are independent Xl variables and Ai are eigenvalues of

q
-1
f(s) =Xf pi{s,t)f(t)dt. (The sum Zki will be < ),
P

19,

g
A 2
that this behaviour is determined by that of f Q0 (t)dt. There are 3 cases

Case B. Suppose Jl <© but J, = . Then there exists a + © such

2

-1

. (v, = 1), where the A,
i i

1

that Z - a

n

n(l -R%) -a == 1%
n O2 1

v, are as defined above. (In this case Zki = o )

and

Case C. For this case suppose both integrals J and J2 are infinite,

1

Then there exist constants a bn . such that
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4.3 Examgles,

)

1. The exponential distribution.

[}

For g =1 we have case C; a log n , and bn = (log n)g , SO that

n

n{(l - R2) ~ log n
2Y/(log n)

= N(0,1).

For g <1 we are in Case A and the distribution is a sum of weighted chi-

squared variables.

2. The uniform test (discussed above).

For any p or ¢ Case A applies and (r - k+l) (1 - R2) has the same

limiting distribution regardless of p, q .

3. The normal test.

For p=0 or gq =1 or both we get Case B .

For p >0, g <.1 we get Case A,

4. The Logistic test: Fw) = 1/(1 +e V), ~o <<,

14

For p=0 or q=1 or both we get Case C.

For p>0 and g < 1, we get Case A. The logistic test is thus

similar to the exponential test.

5. Test for the Extreme Value distribution I: F(w) = 1 - e , = ® < <o

For p = 0, we get Case C.

For p > 0 we get Case A,
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-
6, Test for the Extreme Value distribution II: F(w)

- g ) < ©

]
o

For q =1, we get Case C,

For g < 1, we get Case A.

4.4 Discussion. The discussion above is somewhat imprecise. When p is
0 or g is 1 there are technical details which have been glossed over.

For the distributions we have studied however the criteria given in Cases

A, B and C lead to the correct answer for asymptotic distributions of

Z(X,m) = n{l - Rz(x,m)}.
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Table 1.

Critical Points for

2,

and 2

Upper tail significance level (percent)

n 50 25¢ 15 10 5 2.5 1

4 0.690 1.240 1.94 3.47 8.67 20.3 47.0

6 0.763 1.323 1.89 2.59 4.74 8.49 |17.0

8 0.806 1.364 1.85 2.37 3.78 6.29 |11.4
10 0.832 1.388 1.88 2.34 3.40 5.30 8.9
12 0.848 1.407 1.89 2.33 3.27 4.80 7.8
18 0.877 1.438 1.91 2.32 3.12 4.26 6.3
20 0.881 1.444 1.92 2.32 3.10 4.18 6.0
40 0.907 1.470 1.93 2.32 3.03 3.82 5.1
60 0.916 1.480 1.93 2,32 3.00 3.73 4.9
80 0.920 1.485 1.94 2.32 2.99 3.7 4.9
100 0.922 1.488 1.94 2.32 2.98 3.70 4.8
® 0.932 1.497 1.94 2.31 2.98 3.67 4.6

4 0.140 0.245 0.333 | 0.411 | 0.545 0.707 | 1.010

6 0.166 0.287 0.379 | 0.467 | 0.616 0.796 | 1.065

8 0.184 0.307 0.403 | 0.494 | 0.648 0.830 | 1.089
10 0.193 0.320 0.420 | 0.512 | 0.670 0.848 | 1.102
12 0.200 0.330 0.432 |0.523 | 0.683 0.861 | 1.111
18 0.209 0.346 0.452 {0.543 | 0.705 0.882 | 1,121
20 0.212 0.349 0.455 [0.547 |o0.708 0.886 | 1.124
40 0.224 0.362 0.472 |0.563 |0.727 0.903 | 1,138
60 0.228 0.367 0.477 |o0.568 |0.734 0.909 | 1.146
80 0.229 0.369 0.479 |o0.570 |0.,736 0.911 | 1.149
100 0.230 0.370 0.480 [0.572 |0.737 0.912 | 1.150
® 0.233 0.374 0.485 [0.578 |0.744 0.917 | 1,155
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Table 2. Critical Points for Z3

n 0.5 0.25 0.15 0.10 0.05 0.025 0.01

4 0.344 0.559 0.734 0.888 1.089 1.238 1.388
6 0.441 0.703 0.901 1.053 1.325 1.590 1.918
8 0.495 0.792 1.000 1.163 1.474 1.739 2.100
10 0.535 0.833 1.068 1.245 1.532 1.846 2.294
12 0.560 0.864 1.093 1.280 1.608 1.918 2.360
18 0.605 0.940 1.147 1.348 1.672 2.008 2.503
20 0.610 0.960 1.200 1.370 1.680 2.025 2.520
40 0.640 0.980 1.215 1.396 1.732 2.076 2.580
60 0.648 0.988 1.227 1.410 1.750 2.092 2.590
80 0.658 0.997 1.228 1.418 1.760 2.104 2.610
o0 0.666 0.992 1.234 1.430 1.774 2.129 2.612

L
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